Robot navigation in dynamic environments shared with humans is an important but challenging task, which suffers from performance deterioration as the crowd grows. In this paper, multi-subgoal robot navigation approach based on deep reinforcement learning is proposed, which can reason about more comprehensive relationships among all agents (robot and humans). Specifically, the next position point is planned for the robot by introducing history information and interactions in our work. Firstly, based on subgraph network, the history information of all agents is aggregated before encoding interactions through a graph neural network, so as to improve the ability of the robot to anticipate the future scenarios implicitly. Further consideration, in order to reduce the probability of unreliable next position points, the selection module is designed after policy network in the reinforcement learning framework. In addition, the next position point generated from the selection module satisfied the task requirements better than that obtained directly from the policy network. The experiments demonstrate that our approach outperforms state-of-the-art approaches in terms of both success rate and collision rate, especially in crowded human environments.
translated by 谷歌翻译
为了解决控制循环的耦合问题和多输入多输出(MIMO)PID控制系统中的自适应参数调谐问题,基于深度加强学习(RL)和Lyapunov-提出了一种自适应LSAC-PID算法本文基于奖励塑造。对于复杂和未知的移动机器人控制环境,首先呈现了基于RL的MIMO PID混合控制策略。根据移动机器人的动态信息和环境反馈,RL代理可以实时输出最佳MIMO PID参数,而不知道数学模型和解耦多个控制回路。然后,提高RL的收敛速度和移动机器人的稳定性,基于Lyapunov理论和基于潜在的奖励整形方法提出了一种基于Lyapunov的奖励塑形软演员 - 评论仪(LSAC)算法。算法的收敛性和最优性在于软政策迭代的策略评估和改进步骤。此外,对于线路跟随机器人,改进了该区域生长方法,以适应叉和环境干扰的影响。通过比较,测试和交叉验证,仿真和实际实验结果均显示出所提出的LSAC-PID调谐算法的良好性能。
translated by 谷歌翻译
在实际人群计算应用程序中,图像中的人群密度差异很大。当面对密度变化时,人类倾向于在低密度区域定位和计数目标,并推理高密度区域的数量。我们观察到,CNN使用固定大小的卷积内核专注于局部信息相关性,而变压器可以通过使用全球自我注意机制有效地提取语义人群信息。因此,CNN可以在低密度区域中准确定位和估计人群,而在高密度区域中很难正确感知密度。相反,变压器在高密度区域具有很高的可靠性,但未能在稀疏区域定位目标。 CNN或变压器都无法很好地处理这种密度变化。为了解决此问题,我们提出了一个CNN和变压器自适应选择网络(CTASNET),该网络可以自适应地为不同密度区域选择适当的计数分支。首先,CTASNET生成CNN和变压器的预测结果。然后,考虑到CNN/变压器适用于低/高密度区域,密度引导的自适应选择模块被设计为自动结合CNN和Transformer的预测。此外,为了减少注释噪声的影响,我们引入了基于Correntropy的最佳运输损失。对四个挑战的人群计数数据集进行了广泛的实验,已经验证了该方法。
translated by 谷歌翻译
背景噪声和规模变化是人群计数中长期以来已经认识到的常见问题。人类瞥见人群的形象,立即知道人类的大概数量,以及他们通过关注的人群地区和人群地区的拥塞程度,并具有全球接收领域。因此,在本文中,我们通过对人类自上而下的视觉感知机制进行建模,提出了一个具有称为RANET的区域感知块的新型反馈网络。首先,我们介绍了一个反馈体系结构,以生成优先级地图,这些图提供了输入图像中候选人人群区域的先验。先验使Ranet更加关注人群地区。然后,我们设计了可以通过全局接受字段自适应地将上下文信息编码为输入图像的区域感知块。更具体地说,我们以列向量的形式扫描整个输入图像及其优先级图,以获得相关矩阵估计其相似性。获得的相关矩阵将用于建立像素之间的全球关系。我们的方法在几个公共数据集上优于最先进的人群计数方法。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptive detection aims to improve the generalization of detectors on target domain. To reduce discrepancy in feature distributions between two domains, recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning. However, they neglect the relationship between multiple granularities and different features in alignment, degrading detection. Addressing this, we introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning. The key is to encode the dependencies across different granularities including pixel-, instance-, and category-levels simultaneously to align two domains. Specifically, based on pixel-level features, we first develop an omni-scale gated fusion (OSGF) module to aggregate discriminative representations of instances with scale-aware convolutions, leading to robust multi-scale detection. Besides, we introduce multi-granularity discriminators to identify where, either source or target domains, different granularities of samples come from. Note that, MGA not only leverages instance discriminability in different categories but also exploits category consistency between two domains for detection. Furthermore, we present an adaptive exponential moving average (AEMA) strategy that explores model assessments for model update to improve pseudo labels and alleviate local misalignment problem, boosting detection robustness. Extensive experiments on multiple domain adaption scenarios validate the superiority of MGA over other approaches on FCOS and Faster R-CNN detectors. Code will be released at https://github.com/tiankongzhang/MGA.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译